开篇:问题构建(Framing)--术语介绍

Posted on 2018-02-20

监督式机器学习

  • 通过学习如何输入信息对未见过的数据做出有用的预测

一些术语

标签

在简单线性回归中,标签是我们要预测的事物,即 y 变量。标签可以是小麦未来的价格、图片中显示的动物品种、音频剪辑的含义或任何事物。

特征

在简单线性回归中,特征是描述数据的输入变量,即 x 变量。简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征,按如下方式指定:

	{x1,x2,x3.....xn} 例如在垃圾邮件检测器示例中,特征可能包括:
  • 电子邮件文本中的字词
  • 发件人的地址
  • 发送电子邮件的时段
  • 电子邮件中包含“一种奇怪的把戏”这样的短语。

样本

样本是指数据的特定实例:x。(x 一般是一个矢量。)我们将样本分为以下两类:

  • 有标签样本
  • 无标签样本

有标签样本同时包含特征和标签。即:

labeled examples: {features, label}: (x, y)		

无标签样本包含特征,但不包含标签。即:

    unlabeled examples: {features, ?}: (x, ?)

在使用有标签样本训练了我们的模型之后,我们会使用该模型来预测无标签样本的标签。在垃圾邮件检测器示例中,无标签样本是用户尚未添加标签的新电子邮件。

模型

模型定义了特征与标签之间的关系。例如,垃圾邮件检测模型可能会将某些特征与“垃圾邮件”紧密联系起来。我们来重点介绍一下模型生命周期的两个阶段:

  • 训练表示创建或学习模型。也就是说,给模型提供有标签的样本,让模型逐渐学习特征与标签之间的关系。
  • 推断表示将训练后的模型应用于无标签样本。也就是说,您使用训练后的模型来做出有用的预测 (y’)。例如,在推断期间,您可以针对新的无标签样本预测

回归与分类

回归模型可预测连续值。例如,回归模型做出的预测可回答如下问题:

  • 加利福尼亚州一栋房产的价值是多少?
  • 用户点击此广告的概率是多少?

分类模型可预测离散值。例如,分类模型做出的预测可回答如下问题:

  • 某个指定电子邮件是垃圾邮件还是非垃圾邮件?
  • 这是一张狗、猫还是仓鼠图片?

蚊子再小也是肉~
本站总访问量 本站访客数